Flexible hybrid electronics (FHE) is a novel approach to electronic circuit manufacturing that aims to combine the best of printed and conventional electronics. Conductive interconnects, and as many additional components as possible, are printed onto a flexible substrate, whereas the IC (integrated circuit) is produced separately using photolithography and then mounted (usually as a bare die, without packaging). This resulting hybrid of ‘printed’ and ‘placed’ functionality provides the flexibility long associated with printed electronics, but with the processing capability of an integrated circuit.

This combination of flexibility and processing capability is very desirable, since it reduces weight and enables new form factors, while maintaining desirable functionality such as data logging and Bluetooth connectivity. The technologies enabling this combination of attributes are identified and comprehensively evaluated in the new IDTechEx report: «Flexible Hybrid Electronics 2020-2030: Applications, Challenges, Innovations and Forecasts«.

FHE vs FPCB

If it’s so desirable, you may wonder why circuits with these twin capabilities haven’t been developed already. The answer is that flexible printed circuit boards (FPCBs) already provide processing capability with some flexibility. Such circuits have long been used in automotive and high value consumer electronics applications with space constraints, such as cameras. FPCBs differ from FHE circuits in that interconnects are not printed but are instead etched from a laminated copper sheet using photolithography. Surface mount components, including packaged ICs are then soldered onto the copper interconnects. The table below outlines the differences between conventional rigid PCBs, FPCBs and FHE circuits.

Table comparing the properties of FHE circuits, FPCBs and conventional PCBs, along with their advantages and disadvantages. To learn more please refer to the IDTechEx report «Flexible Hybrid Electronics 2020-2030: Applications, Challenges, Innovations and Forecasts«.